HCMC UNIVERSITY OF TECHNOLOGY AND EDUCATION

Faculty of Electrical And Electronic Engineering

Department of Industrial Electronics

ELECTRONICS AND
COMMUNICATION ENGINEERING
TECHNOLOGY

Level: Undergraduate

SYLLABUS

1. Course name: Digital IC Design Using HDL

2. Course code: DSIC330563

3. Credits: 3 (3/0/6)

Duration: 15 weeks (45h main course and 90h self-study)

4. Instructors:

1- Nguyen Dinh Phu, MEng

2- Nguyen Tan Nhu, MEng

5. Course conditions

Prerequisites: Digital Systems Corequisites: Digital Systems

6. Course description

This course provides students the knowledge of some device technologies and how to apply the HDL to describe basic circuits in Digital Systems. The basic device technologies taught in this course include ASIC, FPGA, and PLD. The Very High Speed Hardware Description Language (VHDL) is applied to design combinational circuits, sequential circuits in digital systems. After acquired the basic structures of IC design in VHDL, the tasks are developed to the higher level by concentrating to the optimization of timing and resources in order to get the suitable required performance of the IC circuits. The two main optimization methods being provided to students are operating sharing and functionality sharing. Moreover, the Finite State Machine (FSM) model is provided to design large sequential digital systems using VHDL. Finally, students are able to use the simulation software supported by Xilinx and Altera cooperations to verify the functions of designed IC circuits.

7. Course Goals

Goals	Goal description (This course provides students:)	ELOs
G1	Basic knowledge of the VHDL in digital IC design	01 (H)
G2	An ability to use English in reading and writing technological documents	05 (M)
G3	An ability to analyze, calculate, explain, and resolve the problems related to the optimization of delay timing, resources, and performance in digital IC design	
G4	An ability to design and simulated the digital circuits using VHDL	02 (M)

^{*} Note: High: H; Medium: M; Low: L

8. Course Learning Outcomes (CLOs)

CLOs		Description	Outcome
		(After completing this course, students can have:)	
G1	G1.1	The ability to discriminate device technologies, design levels, and	01

		design flows in digital IC design using HDL	07
	G1.2	The ability to discriminate and apply various design structures of VHDL	
	G1.3	The ability to use the concurrent signal assignment statements of VHDL	01 07
	G1.4	The ability to use the sequential signal assignment statements of VHDL	01 07
		The ability to understand the datasheets of PAL, GAL, the training courses, the slides, and the technological terms in English	
	G2.2	The ability to use English in answering the assignment tests	
G3	G3.1 The ability to calculate resources and delay of digital systems based on the analyzing of operators and structures described in VHDL		01, 02, 07
GS	G3.2	The ability to optimize digital systems in delay and resources by using operator sharing and functionality sharing techniques	01, 02, 07
G4	G4.1	The ability to use the EAD software supported by Xilinx and Altera to design and simulate the digital circuits described by VHDL	02

9. Study materials

- Textbooks:

[1] Pong P. Chu, *RTL Hardware Design Using VHDL*, A John Wilay & Sons Inc. Publication, 2006.

- References:

[2] Nguyen Dinh Phu, the lessons of Digital IC Design Using VHDL, HCM City University of Technology and Education, 2016.

10. Sudent Assessments

- Grading points: 10
- Planning for students assessment is followed:

Type	Contents	Linetime	Assessment techniques	CLOs	Rates (%)
	Midterms				
Exam01	Combinational circuit designs	Week 9	Individual paper assessment in class	G1.2 G1.3 G1.4 G2.2	15
Exam02	Sequential circuit designs	Week 12	Individual paper assessment in class	G1.2 G1.3 G1.4 G2.2	15
	Frequent assignments in the online learning systems				
Test 1	The overviews of digital systems and hardware description languages	Week 2, Week 4	Quizes	G1.1 G1.2 G2.2	5

Test 2	The signal assigment statements, synthesis flows, and design flows in digital IC design using VHDL	Week 6, Week 8, Week 10	Quizes	G1.2 G1.3 G1.4 G2.2	5
	Big Projects				10
Project 1	Design, verify, and simulate the combincational circuits described in VHDL	Week 8	Reports	G1.2 G1.3 G1.4 G2.1 G4.1	5
Project 2	Design, verify, and simulate the sequential circuits described in VHDL	Week 13	Reports	G1.2 G1.3 G1.4 G2.1 G3.1 G3.2 G4.1	5
Final exam					50
Final Exam	The contents are covered all remaining outcomes of the course. The time length is 90 minutes.		Individual paper assessment in class	G2.2 G3.1 G3.2	50

11. Course details:

Weeks	Contents	CLOs
	<i>Chapter 1:</i> < INTRODUCTION TO THE DIGITAL SYSTEMS> (3/0/6)	
	A/Contents and teaching methods: (2)	
	Contents:	
	1.1 Introduction	
	1.2 Device technologies	
	1.3 System representations	G1.1
1	1.4 Levels of abstraction	G1.1 G2.1
	1.5 EDA softwares	G2. 1
	1.6 IC design flows	
	Teaching methods:	
	+ Presentation	
	+ Questioning	
	B/ Self-study contents: (4)	G2.2
	1.7 Homework	G2.2
2	Chapter 2: <introduction desciption="" hardware="" languages="" the="" to=""> (3/0/6)</introduction>	

	A/Contents and teaching methods: (2)	
	Contents:	
	2.1 Hardware description languages	G1.2
	2.2 Basic concepts of VHDL	G1.3
	Teaching methods:	G2.1
	+ Presentation	
	+ Questioning	
	B/Self-study contents: (4)	G2.2
	2.3 Homework	G2.2
	Chapter 3: < BASIC STRUCTURES OF VHDL > (9/0/18)	
	A/Contents and teaching methods:(2)	
	Contents:	
	3.1 Introduction	
	3.2 Units and general formats of a VHDL program	
	3.3 Objects	
	3.4 Data types and operators	G1.1
	3.5 Pre-defined data types in VHDL	G1.2
3,	3.6 Data operators for array data types	G2.1
4	3.7 Data types in the IEEE package	
	3.8 std logic packaga	
	3.9 Comment in VHDL	
	Teaching methods:	
	+ Presentation	
	+ Questioning	
	B/Self- study contents: (4)	G2.2
	3.10 Homework	G2.2
	Chapter 4: < CONCURRENT SIGNAL ASSIGNMENT	
	STATEMENTS IN VHDL > (9/0/18) A/Contents and teaching methods: (2)	
	Contents:	
	4.1 Discriminate between the combinational and sequential circuits	
	4.2 The simple signal assignment statement	
	4.3 The conditional signal assignment statement	
	4.4 The selected signal assignment statement	G1.3
5,	4.5 Comparision between the conditional and selected signal	G2.1
6	assignment statements	
	Teaching methods:	
	+ Presentation	
	+ Questioning	
	+ Discussion	
	B/Self- study contents: (4)	C2.2
	4.6 Homework	G2.2
	Tome on	

	Chapter 5: < SEQUENTIAL SIGNAL ASSIGNMENT	
	STATEMENTS IN VHDL > (9/0/18) A/ Contents and teaching methods: (2)	
	Contents:	
	5.1 Process in VHDL	
	5.2 Sequential signal assignment statements	
	5.3 The variable assignment statements	
	5.4 the if statement	G1.1
	5.5 the case statement	G1.1 G1.3
7	5.6 Simple Loop statements	G1.3 G2.1
	5.7 The synthesis of senquential statements	02.1
	Teaching methods:	
	+ Presentation	
	+ Questioning	
	+ Discussion	
	B/Self- study contents: (4)	G2.2
	5.8 Homework	02.2
	Chapter 6: <the codes="" of="" synthesis="" vhdl=""> (9/0/18)</the>	
	A/Contents and teaching methods: (2)	
	Contents:	
	6.1 Basic limitations of EDA softwares	
	6.2 Operator realization in VHDL	
	6.3 Usage of the 'Z' value in the std_logic data_type in VHDL	
8,	6.4 The synthesis flow of VHDL codes	G3.1 G2.1
9	6.5 Timing consideration	G2.1
	6.6 Simple Loop statements	
	Teaching methods:	
	+ Presentation	
	+ Discussion	
	B/ Self- study contents: (4)	C2.2
	6.7 Homework	G2.2
	Chapter 7: < COMBINATIONAL CIRCUITS > (9/0/18)	
	A/Contents and teaching methods: (2)	
	Contents:	
	7.1 Main principles to design the high performance logic circuits	
10,	7.2 Operator sharing	G3.1
11	7.3 Funcionality sharing	G3.1 G3.2
	7.4 Layout-related circuits	G2.1
	7.5 General examples	
	Teaching methods:	
	+ Presentation	
	+ Questioning	

	+ Discussion	
	B/Self- study contents: (4) 7.6 Homework	G2.2
	Chapter 8: <basic circuit="" designs="" sequential=""> (9/0/18)</basic>	
	A/Contents and teaching methods: (2)	
	Contents:	
	8.1 Overviews of sequential circutis	
	8.2 Synchronous circuits	
	8.3 Danger of synthesizing asynchronous circuits	G1.1
	8.4 Basic memorizing elements	G1.2
12,	8.5 Basic examples	G2.1
13	8.6 Timing analysis in synchronous circuits	G3.2
	8.7 Using variables in sequential circuit descriptions	G4.1
	8.8 Synthesis of sequential circuits	
	Teaching methods:	
	+ Presentation	
	+ Questioning	
	B/Self- study contents: (4)	G3.2
	8.9 Homework	G4.1
	Chapter 9: <finite (fsm)="" machine="" state=""> (9/0/18)</finite>	
	A/Contents and teaching methods: (3)	
	Contents:	
	9.1 Overview	
	9.2 FSM representation	
	9.3 Timing and performance of an FSM	
	9.4 Moore machine versus Mealy machine	G1.2
	9.5 VHDL desciption of FSMs	G2.1
14,	9.6 State assigment	G3.2
15	9.7 Moore output buffering	G4.1
	9.8 FSM design examples	
	Teaching methods:	
	+ Presentation	
	+ Questioning	
	+ Discussion	
	B/Self-study contents: (6)	C 4 1
	9.9 Homework	G4.1

12. Learning ethics:

- Home assignments and projects must be done by the students themselves. Plagiarism found in the assessments will get zero point

13. First approved date: August 01 2012

14. Approval level:

Dean Department Instructor

15. Syllabus updated process

1st time: Updated content dated	Instructors Nguyen Dinh Phu
2 st time: Updated content dated	Head of department